Photoinduced Transformation of Silicone-modified TiO₂

Akira Nakabayashi, †,†† Junko N. Kondo,†† Michikazu Hara,†† and Kazunari Domen*,†††

†Performance Materials R&D Center, Asahi Kasei Chemicals Co., Ltd., Kawasaki-ku, Kawasaki 210-0863

††Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503

†††Department of Chemical System Engineering, School of Engineering, The University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656

(Received October 26, 2004; CL-041263)

Silicone-modified titanium dioxide (TiO_2) was prepared by solid–liquid reaction between TiO_2 powder and H-siloxane. The surface energy of the synthesized powder was found to increase upon irradiation, an effect that was determined through electron spin resonance and ²⁹Si nuclear magnetic resonance studies to be due to photocatalytic oxidation of the silicone present on the TiO_2 .

Titanium dioxide has excellent potential as a photocatalyst for the decomposition of various undesirable substances in the environment.¹⁻⁴ In essence, the photocatalytic performance of TiO₂ is based on the strong redox power of the photogenerated electron–hole pairs in its structure. The oxidation power of the holes is sufficient to completely oxidize a wide range of organic substances to inorganic compounds.

Recently, a number of studies have examined means of controlling the photocatalytic activity of TiO₂ by modifying its surface. ⁵⁻¹¹ For example, TiO₂ powder treated with octadecyltrichlorosilane has been reported to exhibit high activity and selectivity for the photocatalytic oxidation of benzene to phenol in water. ⁶ Thus, control of the surface properties of the photocatalyst can be regarded as a viable strategy for the improvement of photocatalytic performance. In the present work, the irradiation-induced changes in surface energy and structure of a silicone-modified TiO₂ obtained by liquid-phase reaction between TiO₂ and H-siloxane are examined.

Titanium dioxide (ST-01, Ishihara Sangyo Kaisha Co.) and H-siloxane (KF99, Shin-Etsu Chemical Co.; SiH = 15.8 mmol·g $^{-1}$, $M_{\rm n}$ = 2900, structural formula shown in Figure 1) were purchased and used without further purification. TiO₂ powder (9.0 g) was reacted with H-siloxane (1.0 g) in toluene (40.0 g) at 323 K for 8 h. A total of 306 mL of H₂ gas was evolved over this reaction period. The unreacted H-siloxane and toluene were then removed by filtration, and the silicone-modified TiO₂ powder was dried in air overnight at 323 K.

Figure 1. Structural formula of KF99. (n (average) = 47)

Infrared (IR) spectra of TiO_2 and the silicone-modified TiO_2 were measured by Fourier transform IR (FT-IR) spectroscopy (FT/IR-5300, Japan Spectroscopic Co.) The IR spectrum (not shown) of the silicone-modified TiO_2 exhibited several bands assignable to H-siloxane: the antisymmetric (2972 cm⁻¹) and sym-

metric (2912 cm $^{-1}$) stretching vibrations of CH $_3$ groups, the stretching vibration of Si–H groups (2166 cm $^{-1}$), and the symmetric deformation of CH $_3$ groups (1271 cm $^{-1}$). The band representative of O–H stretching vibration in the Ti–OH groups (3635 cm $^{-1}$) was not apparent following the reaction between TiO $_2$ powder and H-siloxane.

The degree of surface modification of the silicone-modified TiO₂ was examined by X-ray photoelectron spectroscopy (XPS; ESCA 3200, Shimadzu Co.) The surface atomic ratio of Si/Ti (Ti2P3/2; 459.6 eV, Si2P; 102.5 eV) was estimated to be 0.26.

The silicone-modified TiO₂ powder was pressed into a disk (diameter: 1 cm) for water contact angle measurements, taken before and after irradiation under a black light blue (BLB) light (FL20S-BLB, Toshiba Lighting and Technology Co.). The intensity of the BLB light was adjusted to 1 mW·cm⁻², as measured using an ultraviolet radiometer (UVR-2, Topcon; with UD-36 detector). A drop of deionized water was placed on the surface of the disk and allowed to stand for 1 min at 293 K. The water contact angle was then measured using a contact angle meter (CA-X150, Kyowa Interface Science Co.)

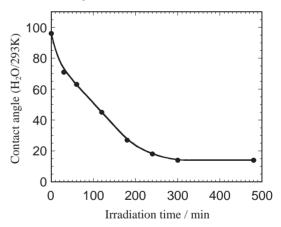
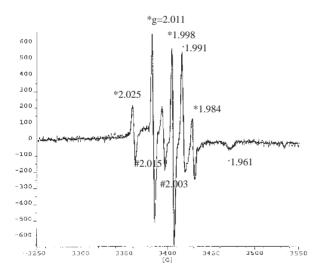


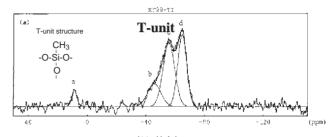
Figure 2. Changes in water contact angle of silicone-modified TiO_2 disk upon irradiation.

As shown in Figure 2, the silicone-modified TiO_2 disk was initially hydrophobic (water contact angle: 98°), but became highly hydrophilic (water contact angle: 17°) after irradiation for more than 300 min. The surface tension of the silicone-modified TiO_2 was estimated from the contact angle using Sell and Neumann's empirical formula, ¹³ as given by


$$\cos \theta = \frac{(0.015\gamma_{s} - 2) \times \sqrt{\gamma_{s} \times \gamma_{1}} + \gamma_{1}}{\gamma_{1} \times (0.015 \times \sqrt{\gamma_{s} \times \gamma_{1}} - 1)}$$

where γ_s represents the surface tension (mN·m⁻¹) of the silicone-modified TiO₂, and γ_1 represents the surface energy of wa-

ter, i.e., $72.8\,\mathrm{mN\cdot m^{-1}}$ (293 K). The calculated surface tension was $25\,\mathrm{mN\cdot m^{-1}}$ before irradiation and $68\,\mathrm{mN\cdot m^{-1}}$ after irradiation. Thus, the surface energy of the silicone-modified TiO₂ increased upon irradiation.


The photoinduced change in surface tension was further examined by electron spin resonance (ESR) analysis of the silicone-modified TiO_2 powder under irradiation using an Xe lamp (KXL-500F, Wacom; with V40-filter, Kenko Co.). Analysis was performed using an ESR spectrometer (EMX10/15, Bruker) under evacuation at 77 K. The intensity of the Xe lamp was adjusted to $1\,\text{mW}\cdot\text{cm}^{-2}$.

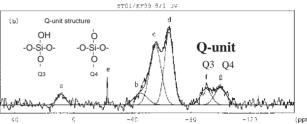

Figure 3 shows the resultant ESR spectrum. The spectrum indicates the formation of a methyl radical (quartet signal; $g=1.984,\ 1.998,\ 2.011,\$ and 2.025) during irradiation, in addition to ${\rm Ti}^{3+}$ (g=1.961 and 1.991) and an OH radical (g=2.003 and 2.015). 14 Based on this result, it is considered that irradiation induced the formation of ${\rm Ti}^{3+}$ species and positive holes in ${\rm TiO}_2$. The positive holes would then have reacted with water to form OH radicals, which would then have attacked the silicone species on the surface of the ${\rm TiO}_2$, generating Si–OH groups and methyl radicals. The ${\rm TiO}_2$ surface is thus considered to become hydrophilic as a consequence of the irradiation-induced reactions. Under irradiation, ${\rm TiO}_2$ oxidizes a fraction of the silicone present on the ${\rm TiO}_2$ surface, yielding hydrophilic silica.

Figure 3. ESR spectrum of silicone-modified TiO_2 under irradiation (77 K). Bands due to Ti^{3+} (·), methyl radicals (*), and OH radicals (#), are indicated.

This mechanism was confirmed through ²⁹Si nuclear magnetic resonance (NMR) analysis using a JNM-LA400 spectrometer (JOEL Co.) The ²⁹Si NMR spectra taken before and after irradiation of the silicone-modified TiO₂ powder under a BLB light (1 mW·cm⁻²) for 1 week are shown in Figure 4. The spectra show that a fraction of the silicone present on the surface of the TiO₂ is transformed from the T-unit structure to a Q-unit structure by irradiation (representing the degree of functionality of the silicone atom, see inset of Figure 4). This result clearly supports the mechanism mentioned above.

Figure 4. ²⁹Si NMR spectra of silicone-modified TiO₂ (a) before and (b) after irradiation.

In conclusion, silicone-modified ${\rm TiO_2}$ powder obtained by liquid-phase reaction between ${\rm TiO_2}$ powder and H-siloxane was found to be transformed under ultraviolet irradiation from hydrophobic to hydrophilic. It was confirmed that this change in surface property is attributable to the formation of Si–OH species.

References

- A. Mills, R. H. Davies, and D. Worsely, *Chem. Soc. Rev.*, 1993, 417.
- 2 E. Pelizzetti, M. Borgarello, and N. Serpone, *Chemosphere*, **17**, 499 (1988).
- 3 "Photocatalytic Purification and Treatment of Water and Air," ed. by D. F. Ollis and H. Al-Ekabi, Elservier, Amsterdam (1993).
- 4 D. Bahnemann, L. Bousselmi, H. Freudenhammer, A. Ghrabi, S. Geissen, U. Siemon, F. Saleh, A. Si-Salah, and A. Vogelpohl, *Oxid. Technol. Water Wastewater Treat.*, *Int. Conf.*, **1996**, 46.
- N. Z. Muradov, A. T.-Raissi, D. Muzzey, C. P. Painter, and M. R. Kemme, *Sol. Energy*, **56**, 445 (1996).
- 6 S. Ikeda, H. Nur, T. Sawadaishi, K. Ijiro, M. Shinomura, and B. Ohtani, *Langmuir*, **2001**, 17.
- S. Ikeda, U. Kihata, K. Ikegami, M. Matsumura, and B. Ohtani, *Photocatalysis*, 12, 138 (2003).
- 8 B. Ohtani and S. Ikeda, *Photocatalysis*, **14**, 36 (2004).
- 9 Y. Wada, K. Tomita, K. Murakoshi, and S. Yanagida, J. Chem. Res., Synop., 1996, 320.
- 10 H. Fukui, Hyomen, 32, 131 (1994).
- 11 H. Tada, Langmuir, 12, 966 (1996).
- 12 "The Analytical Chemistry of Silicones," ed. by A. L. Smith, Wiley-Interscience, New York (1991).
- 13 P. J. Sell and A. W. Neumann, *Angew. Chem.*, 78, 321 (1966).
- 14 H. G. Völtz, G. Kampf, and H. G. Fitzky, *Prog. Org. Coat.*, 2, 223 (1973/74).